Optimisation of GMM in Speaker Re ognition
نویسندگان
چکیده
منابع مشابه
Optimisation of GMM in speaker recognition
Given that the amount of speaker speci c training data is always limited, for a given amount of data a speaker model has an optimum number of components. Here, this is investigated with regard to Gaussian mixture models (GMM) with and without world model adaption. Test results show that maximising the number of components in a speaker model can improve speaker recognition results. Comparisons w...
متن کاملKL realignment for speaker diarization with multiple feature streams
This paper aims at investigating the use of Kullback-Leibler (KL) divergence based realignment with application to speaker diarization. The use of KL divergence based realignment operates directly on the speaker posterior distribution estimates and is compared with traditional realignment performed using HMM/GMM system. We hypothesize that using posterior estimates to re-align speaker boundarie...
متن کاملExplicit modelling of session variability for speaker verification
This article describes a general and powerful approach to modelling mismatch in speaker recognition by including an explicit session term in the Gaussian mixture speaker modelling framework. Under this approach, the Gaussian mixture model (GMM) that best represents the observations of a particular recording is the combination of the true speaker model with an additional session-dependent offset...
متن کاملSpeaker Diarization Based on Gmm Supervectors and Unsupervised Intra-speaker Variability Modeling
This paper presents a novel framework for speaker diarization. Audio is parameterized by a sequence of GMM-supervectors representing overlapping short segments of speech. Session dependent intra-session intra-speaker variability is estimated online in an unsupervised manner, and is removed from the supervectors using Nuisance Attribute Projection (NAP) The supervectors are then projected using ...
متن کاملFactor analysis subspace estimation for speaker verification with short utterances
Training the speaker and session subspaces is an integral problem in developing a joint factor analysis GMM speaker verification system. This work investigates and compares several alternative procedures for this task with a particular focus on training and testing with short utterances. Experiments show that better performance can be obtained when an independent rather than simultaneous optimi...
متن کامل